Document Type
Article
Publication Date
2015
Digital Object Identifier (DOI)
https://doi.org/10.1038/srep17357
Abstract
Drug-drug interaction (DDI) is becoming a serious clinical safety issue as the use of multiple medications becomes more common. Searching the MEDLINE database for journal articles related to DDI produces over 330,000 results. It is impossible to read and summarize these references manually. As the volume of biomedical reference in the MEDLINE database continues to expand at a rapid pace, automatic identification of DDIs from literature is becoming increasingly important. In this article, we present a random-sampling-based statistical algorithm to identify possible DDIs and the underlying mechanism from the substances field of MEDLINE records. The substances terms are essentially carriers of compound (including protein) information in a MEDLINE record. Four case studies on warfarin, ibuprofen, furosemide and sertraline implied that our method was able to rank possible DDIs with high accuracy (90.0% for warfarin, 83.3% for ibuprofen, 70.0% for furosemide and 100% for sertraline in the top 10% of a list of compounds ranked by p-value). A social network analysis of substance terms was also performed to construct networks between proteins and drug pairs to elucidate how the two drugs could interact.
Rights Information
This work is licensed under a Creative Commons Attribution 4.0 License.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
Scientific Reports, v. 5, art. 17357
Scholar Commons Citation
Lu, Yin; Shen, Dan; Pietsch, Maxwell; Nagar, Chetan; Fadli, Zayd; Huang, Hong; Tu, Yi-Cheng; and Chen, Feng, "A Novel Algorithm for Analyzing Drug-Drug Interactions from Medline Literature" (2015). School of Information Faculty Publications. 347.
https://digitalcommons.usf.edu/si_facpub/347