Effects of 50 Hz Electromagnetic Fields on Human Epidermal Stem Cells Cultured on Collagen Sponge Scaffolds
Document Type
Article
Publication Date
2012
Keywords
Electromagnetic fields (EMF), Epidermal stem cells (ESC), Proliferation
Digital Object Identifier (DOI)
https://doi.org/10.3109/09553002.2012.692496
Abstract
Purpose: This study is to investigate the effects of electromagnetic fields (EMF) on proliferation of epidermal stem cells (ESC), which could present a viable clinical option for skin tissue engineering. Materials and methods: The ESC obtained from human foreskin were grafted into type-I three-dimensional collagen sponge scaffolds, and then were exposed with EMF (frequency 50 Hz, intensity 5 mT) for 14 d (30 min per d). Meanwhile, the control group was set under the same conditions without EMF. The effects of EMF on growth and proliferation of ESC were analyzed with staining of hematoxylin and eosin (H&E) and 4′,6-diamidino-2-phenylindole (DAPI) under microscope or scanning electron microscope. The data of DAPI staining for 2 d, 7 d, 10 d and 14 d were collected respectively to investigate the cells proliferation. Results: ESC cultured in collagen sponge scaffolds could be steady grown and EMF could promote ESC proliferation compared with control (P < 0.05). Conclusions: EMF could significantly promote proliferation of ESC, which leads to a promising clinical option for skin tissue engineering.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
International Journal of Radiation Biology, v. 88, issue 7, p. 523-530
Scholar Commons Citation
Bai, Wen-Fang; Zhang, Ming-Sheng; Huang, Hong; Zhu, Hong-Xiang; and Xu, Wei-Cheng, "Effects of 50 Hz Electromagnetic Fields on Human Epidermal Stem Cells Cultured on Collagen Sponge Scaffolds" (2012). School of Information Faculty Publications. 164.
https://digitalcommons.usf.edu/si_facpub/164