Document Type

Article

Publication Date

2019

Keywords

Atp-dependent Nucleosome Remodeler, BAF Complex, Chromatin Remodeling, Intrinsically Disordered Protein, Intrinsically Disordered Protein Region

Digital Object Identifier (DOI)

https://doi.org/10.3390/ijms20215260

Abstract

The two-meter-long DNA is compressed into chromatin in the nucleus of every cell, which serves as a significant barrier to transcription. Therefore, for processes such as replication and transcription to occur, the highly compacted chromatin must be relaxed, and the processes required for chromatin reorganization for the aim of replication or transcription are controlled by ATP-dependent nucleosome remodelers. One of the most highly studied remodelers of this kind is the BRG1- or BRM-associated factor complex (BAF complex, also known as SWItch/sucrose non-fermentable (SWI/SNF) complex), which is crucial for the regulation of gene expression and differentiation in eukaryotes. Chromatin remodeling complex BAF is characterized by a highly polymorphic structure, containing from four to 17 subunits encoded by 29 genes. The aim of this paper is to provide an overview of the role of BAF complex in chromatin remodeling and also to use literature mining and a set of computational and bioinformatics tools to analyze structural properties, intrinsic disorder predisposition, and functionalities of its subunits, along with the description of the relations of different BAF complex subunits to the pathogenesis of various human diseases.

Rights Information

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

International Journal of Molecular Sciences, v. 20, issue 21, art. 5260

Share

COinS