Ligands for Glaucoma-Associated Myocilin Discovered by a Generic Binding Assay

Document Type

Article

Publication Date

2014

Digital Object Identifier (DOI)

https://doi.org/10.1021/cb4007776

Abstract

Mutations in the olfactomedin domain of myocilin (myoc-OLF) are the strongest link to inherited primary open angle glaucoma. In this recently identified protein misfolding disorder, aggregation-prone disease variants of myocilin hasten glaucoma-associated elevation of intraocular pressure, leading to vision loss. Despite its well-documented pathogenic role, myocilin remains a domain of unknown structure or function. Here we report the first small-molecule ligands that bind to the native state of myoc-OLF. To discover these molecules, we designed a general label-free, mix-and-measure, high throughput chemical assay for restabilization (CARS), which is likely readily adaptable to discover ligands for other proteins. Of the 14 hit molecules identified from screening myoc-OLF against the Sigma-Aldrich Library of Pharmacologically Active Compounds using CARS, surface plasmon resonance binding studies reveal three are stoichiometric ligand scaffolds with low micromolar affinity. Two compounds, GW5074 and apigenin, inhibit myoc-OLF amyloid formation in vitro. Structure–activity relationship-based soluble derivatives reduce aggregation in vitro as well as enhance secretion of full-length mutant myocilin in a cell culture model. Our compounds set the stage for a new chemical probe approach to clarify the biological function of wild-type myocilin and represent lead therapeutic compounds for diminishing intracellular sequestration of toxic mutant myocilin.

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

American Chemical Society, v. 9, issue 2, p. 517-525

Share

COinS