Document Type

Article

Publication Date

2015

Keywords

Intrinsically disordered protein, caldesmon, calmodulin, protein-protein interaction, MoRF

Digital Object Identifier (DOI)

https://doi.org/10.7287/peerj.preprints.1261v1

Abstract

We show here that chicken gizzard caldesmon (CaD) and its C-terminal domain (residues 636-771, CaD136) are intrinsically disordered proteins. The computational and experimental analyses of the wild type CaD136 and series of its single tryptophan mutants (W674A, W707A, and W737A) and a double tryptophan mutant (W674A/W707A) suggested that although the interaction of CaD136 with calmodulin (CaM) can be driven by the non-specific electrostatic attraction between these oppositely charged molecules, the specificity of CaD136-CaM binding is likely to be determined by the specific packing of important CaD136 tryptophan residues at the CaD136-CaM interface. It is suggested that this interaction can be described as the “buttons on a charged string” model, where the electrostatic attraction between the intrinsically disordered CaD136 and the CaM is solidified in a “snapping buttons” manner by specific packing of the CaD136 “pliable buttons” (which are the short segments of fluctuating local structure condensed around the tryptophan residues) at the CaD136-CaM interface. Our data also show that all three “buttons” are important for binding, since mutation of any of the tryptophans affects CaD136-CaM binding and since CaD136 remains CaM-buttoned even when two of the three tryptophans are mutated to alanines.

Rights Information

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

PeerJ, v. 3, art. e1261v1

Share

COinS