Understanding the Roles of Intrinsic Disorder in Subunits of Hemoglobin and the Disease Process of Sickle Cell Anemia
Document Type
Article
Publication Date
2016
Keywords
hemoglobin, intrinsic disorder, intrinsically disordered protein, sickle cell anemia
Digital Object Identifier (DOI)
https://doi.org/10.1080/21690707.2016.1248273
Abstract
One of the common genetic disorders is sickle cell anemia, in which 2 recessive alleles must meet to allow for destruction and alteration in the morphology of red blood cells. This usually leads to loss of proper binding of oxygen to hemoglobin and curved, sickle-shaped erythrocytes. The mutation causing this disease occurs in the 6th codon of the HBB gene encoding the hemoglobin subunit β (β-globin), a protein, serving as an integral part of the adult hemoglobin A (HbA), which is a heterotetramer of 2 α chains and 2 β chains that is responsible for binding to the oxygen in the blood. This mutation changes a charged glutamic acid to a hydrophobic valine residue and disrupts the tertiary structure and stability of the hemoglobin molecule. Since in the field of protein intrinsic disorder, charged and polar residues are typically considered as disorder promoting, in opposite to the order-promoting non-polar hydrophobic residues, in this study we attempted to answer a question if intrinsic disorder might have a role in the pathogenesis of sickle cell anemia. To this end, several disorder predictors were utilized to evaluate the presence of intrinsically disordered regions in all subunits of human hemoglobin: α, β, δ, ϵ, ζ, γ1, and γ2. Then, structural analysis was completed by using the SWISS-MODEL Repository to visualize the outputs of the disorder predictors. Finally, Uniprot STRING and D2P2 were used to determine biochemical interactome and protein partners for each hemoglobin subunit along with analyzing their posttranslational modifications. All these properties were used to determine any differences between the 6 different types of subunits of hemoglobin and to correlate the mutation leading to sickle cell anemia with intrinsic disorder propensity.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
Intrinsically Disordered Proteins, v. 4, issue 1, art. e1248273
Scholar Commons Citation
Fitzsimmons, Reis; Amin, Narmin; and Uversky, Vladimir N., "Understanding the Roles of Intrinsic Disorder in Subunits of Hemoglobin and the Disease Process of Sickle Cell Anemia" (2016). Molecular Medicine Faculty Publications. 289.
https://digitalcommons.usf.edu/mme_facpub/289