Document Type
Article
Publication Date
2022
Keywords
Fourier Transform Infrared Spectroscopy, Water Structure, Protein Solution, Hydrogen Bond
Digital Object Identifier (DOI)
https://doi.org/10.3390/ijms231911381
Abstract
This work presents the first evidence that dissolved globular proteins change the arrangement of hydrogen bonds in water, with different proteins showing quantitatively different effects. Using ATR-FTIR (attenuated total reflection—Fourier transform infrared) spectroscopic analysis of OH-stretch bands, we obtain quantitative estimates of the relative amounts of the previously reported four subpopulations of water structures coexisting in a variety of aqueous solutions. Where solvatochromic dyes can measure the properties of solutions of non-ionic polymers, the results correlate well with ATR-FTIR measurements. In protein solutions to which solvatochromic dye probes cannot be applied, NMR (nuclear magnetic resonance) spectroscopy was used for the first time to estimate the hydrogen bond donor acidity of water. We found strong correlations between the solvent acidity and arrangement of hydrogen bonds in aqueous solutions for several globular proteins. Even quite similar proteins are found to change water properties in dramatically different ways.
Rights Information
This work is licensed under a Creative Commons Attribution 4.0 License.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
International Journal of Molecular Sciences, v. 23, issue 19, art. 11381
Scholar Commons Citation
Titus, Amber R.; Madeira, Pedro P.; Ferreira, Luisa A.; Belgovskiy, Alexander I.; Mann, Elizabeth K.; Mann, Jay Adin Jr.; Meyer, William V.; Smart, Anthony E.; Uversky, Vladimir N.; and Zaslavsky, Boris, "Arrangement of Hydrogen Bonds in Aqueous Solutions of Different Globular Proteins" (2022). Molecular Medicine Faculty Publications. 1014.
https://digitalcommons.usf.edu/mme_facpub/1014