Document Type
Article
Publication Date
2-4-2019
Digital Object Identifier (DOI)
https://doi.org/10.1038/s41598-018-36567-x
Abstract
To advance understanding of the fate of hydrocarbons released from the Deepwater Horizon oil spill and deposited in marine sediments, this study characterized the microbial populations capable of anaerobic hydrocarbon degradation coupled with sulfate reduction in non-seep sediments of the northern Gulf of Mexico. Anaerobic, sediment-free enrichment cultures were obtained with either hexadecane or phenanthrene as sole carbon source and sulfate as a terminal electron acceptor. Phylogenetic analysis revealed that enriched microbial populations differed by hydrocarbon substrate, with abundant SSU rRNA gene amplicon sequences from hexadecane cultures showing high sequence identity (up to 98%) to Desulfatibacillum alkenivorans (family Desulfobacteraceae), while phenanthrene-enriched populations were most closely related to Desulfatiglans spp. (up to 95% sequence identity; family Desulfarculaceae). Assuming complete oxidation to CO2, observed stoichiometric ratios closely resembled the theoretical ratios of 12.25:1 for hexadecane and 8.25:1 for phenanthrene degradation coupled to sulfate reduction. Phenanthrene carboxylic acid was detected in the phenanthrene-degrading enrichment cultures, providing evidence to indicate carboxylation as an activation mechanism for phenanthrene degradation. Metagenome-assembled genomes (MAGs) revealed that phenanthrene degradation is likely mediated by novel genera or families of sulfate-reducing bacteria along with their fermentative syntrophic partners, and candidate genes linked to the degradation of aromatic hydrocarbons were detected for future study.
Rights Information
This work is licensed under a Creative Commons Attribution 4.0 License.
Was this content written or created while at USF?
No
Citation / Publisher Attribution
Scientific Reports, v. 9, art. 1239
Scholar Commons Citation
Shin, Boryoung; Kim, Minjae; Zengler, Karsten; Chin, Kuk-Jeong; Overholt, Will A.; Gieg, Lisa M.; Konstantinidis, Konstantinos T.; and Kostka, Joel E., "Anaerobic Degradation of Hexadecane and Phenanthrene Coupled to Sulfate Reduction by Enriched Consortia from Northern Gulf of Mexico Seafloor Sediment" (2019). C-IMAGE Publications. 22.
https://digitalcommons.usf.edu/cimage_pubs/22
Comments
Data used in this article are available for download.
Anaerobic degradation of hexadecane and phenanthrene coupled to sulfate reduction in seafloor sediments from the northern Gulf of Mexico