Classification of Oil Spill by Thicknesses using Multiple Remote Sensors
Document Type
Article
Publication Date
1-2020
Keywords
Oil spills, Oil thickness, Oil emulsions, Remote sensing imagery, SAR
Digital Object Identifier (DOI)
https://doi.org/10.1016/j.rse.2019.111421
Abstract
Satellite Synthetic Aperture Radar (SAR) is an operational tool for monitoring and assessment of oil spills. Satellite SAR has primarily been used to detect the presence/absence of oil, yet its ability to discriminate oil emulsions within a detected oil slick has not been fully exploited. Additionally, one of the challenges in the past has been the ability to deliver strategic information derived from satellite remote sensing in a timely fashion to responders in the field. This study presents methods for the rapid classification of oil types and estimated thicknesses, from which information about thick oil and oil emulsions (i.e., “actionable” oil) can be delivered in an operational timeframe to responders in the field. Experiments carried out at the OHMSETT test facility in New Jersey demonstrate that under specific viewing conditions, a single polarization satellite SAR image can record a signal variance between thick stable emulsions and non-emulsified oil. During a series of field campaigns in the Gulf of Mexico with in situ measurements of oil thickness, multiple satellite data were obtained including fully polarimetric C-band SAR imagery from RADARSAT-2 and multispectral imagery from ASTER and WorldView-2. One campaign included the airborne polarimetric UAVSAR L-band sensor. An oil/emulsion thickness classification product was generated based on RADARSAT-2 polarimetric imagery using entropy and the damping ratio derivations. Herein, we present the classification methods to generate oil thickness products from SAR, validated by sea-truth observations, the multispectral imagery, and the UAVSAR data. We tested the ability to deliver these products with minimum latency to responding vessels via NOAA. During field operations in the Gulf of Mexico, a satellite SAR-based product of oil delineation by relative thickness was delivered to a responding vessel 42 min after the RADARSAT-2 data acquisition. This proof-of-concept test using satellite SAR and multispectral imagery to detect emulsions and deliver a derived information product to a vessel in near-real-time points directly to methods for satellite-based assets to be used in the near future for oil spill tactical response operations.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
Remote Sensing of Environment, v. 236, art. 111421
Scholar Commons Citation
Garcia-Pineda, Oscar; Staples, Gordon; Jones, Cathleen; Hu, Chuanmin; Holt, Benjamin; Kourafalou, Villy; Graettinger, George; DiPinto, Lisa; Ramirez, Ellen; Streett, Davida; Cho, Jay; Swayze, Gregg A.; Sun, Shaojie; Garcia, Diana; and Haces-Garcia, Francisco, "Classification of Oil Spill by Thicknesses using Multiple Remote Sensors" (2020). C-IMAGE Publications. 157.
https://digitalcommons.usf.edu/cimage_pubs/157
Comments
Data used in this article are available for download.
Oil spill statistical assessment at MC-20 Taylor oil spill site from satellite imagery in 2004-2016