"Supramolecular Kandinsky Circles with High Antibacterial Activity" by Heng Wang, Xiaomin Qian et al.
 

Document Type

Article

Publication Date

5-2018

Digital Object Identifier (DOI)

https://doi.org/10.1038/s41467-018-04247-z

Abstract

Nested concentric structures widely exist in nature and designed systems with circles, polygons, polyhedra, and spheres sharing the same center or axis. It still remains challenging to construct discrete nested architecture at (supra)molecular level. Herein, three generations (G2−G4) of giant nested supramolecules, or Kandinsky circles, have been designed and assembled with molecular weight 17,964, 27,713 and 38,352 Da, respectively. In the ligand preparation, consecutive condensation between precursors with primary amines and pyrylium salts is applied to modularize the synthesis. These discrete nested supramolecules are prone to assemble into tubular nanostructures through hierarchical self-assembly. Furthermore, nested supramolecules display high antimicrobial activity against Gram-positive pathogen methicillin-resistant Staphylococcus aureus (MRSA), and negligible toxicity to eukaryotic cells, while the corresponding ligands do not show potent antimicrobial activity.

Comments

Complete list of authors: Ming Wang, Xiang Gao, Bingqian Xu, Xin-Qi Hao, Weitao Gong, Jun-Li Hou

Rights Information

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

Nature Communications, v. 9, art. 1815

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 86
  • Usage
    • Downloads: 137
    • Abstract Views: 24
  • Captures
    • Readers: 56
  • Mentions
    • Blog Mentions: 1
    • News Mentions: 1
  • Social Media
    • Shares, Likes & Comments: 2
see details

Share

COinS