Designed Conformation and Fluorescence Properties of Self-Assembled Phenazine-Cored Platinum(II) Metallacycles
Document Type
Article
Publication Date
2019
Digital Object Identifier (DOI)
https://doi.org/10.1021/jacs.9b01368
Abstract
A series of platinum(II) metallacycles were prepared via the coordination-driven self-assembly of a phenazine-cored dipyridyl donor with a 90° Pt(II) acceptor and various dicarboxylate donors in a 1:1:2 ratio. While the metallacycles display similar absorption profiles, they exhibit a trend of blue-shifted fluorescence emission with the decrease in the bite angles between the carboxylate building blocks. Comprehensive spectroscopic and dynamic studies as well as a computational approach were conducted, revealing that the difference in the degree of constraint imposed on the excited-state planarization of the phenazine core within these metallacycles results in their distinct photophysical behaviors. As such, a small initial difference in the dicarboxylate building blocks is amplified into distinct photophysical properties of the metallacycles, which is reminiscent of the efficient functional tuning observed in natural systems. In addition to the pre-assembly approach, the photophysical properties of a metallacycle can also be modulated using a post-assembly modification to the dicarboxylate building block, suggesting another strategy for functional tuning. This research illustrated the potential of coordination-driven self-assembly for the preparation of materials with precisely tailored functionalities at the molecular level.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
Journal of the American Chemical Society, v. 141, issue 14, p. 5535-5543
Scholar Commons Citation
Zhou, Zhixuan; Chen, Deng-Gao; Saha, Manik Lal; Wang, Heng; Li, Xiaopeng; Chou, Pi-Tai; and Stang, Peter J., "Designed Conformation and Fluorescence Properties of Self-Assembled Phenazine-Cored Platinum(II) Metallacycles" (2019). Chemistry Faculty Publications. 205.
https://digitalcommons.usf.edu/chm_facpub/205