Thiamin Diphosphate Activation in 1-Deoxy-d-xylulose 5-Phosphate Synthase: Insights into the Mechanism and Underlying Intermolecular Interactions
Document Type
Article
Publication Date
2016
Digital Object Identifier (DOI)
https://doi.org/10.1021/acs.jpcb.6b07248
Abstract
1-Deoxy-d-xylulose 5-phosphate synthase (DXS) is a thiamin diphosphate (TDP) dependent enzyme that marks the beginning of the methylerythritol 4-phosphate isoprenoid biosynthesis pathway. The mechanism of action for DXS is still poorly understood and begins with the formation of a thiazolium ylide. This TDP activation step is thought to proceed through an intramolecular deprotonation by the 4′-aminopyrimidine ring of TDP; however, this step would occur only after an initial deprotonation of its own 4′-amino group. The mechanism of the initial deprotonation has been hypothesized, by analogy to transketolases, to occur via a histidine or an active site water molecule. Results from hybrid quantum mechanical/molecular mechanical (QM/MM) reaction path calculations reveal an ∼10 kcal/mol difference in transition state energies, favoring a water mediated mechanism over direct deprotonation by histidine. This difference was determined to be largely governed by electrostatic changes induced by conformational variations in the active site. Additionally, mutagenesis studies reveal DXS to be an evolutionarily resilient enzyme. Particularly, we hypothesize that residues H82 and H304 may act in a compensatory fashion if the other is lost due to mutation. Further, nucleus-independent chemical shifts (NICSs) and aromatic stabilization energy (ASE) calculations suggest that reduction in TDP aromaticity also serves as a factor for regulating ylide formation and controlling reactivity.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
The Journal of Physical Chemistry B, v. 120, issue 37, p. 9922-9934
Scholar Commons Citation
White, Justin K.; Handa, Sumit; Vankayala, Sai Lakshmana; Merkler, David J.; and Woodcock, H. Lee, "Thiamin Diphosphate Activation in 1-Deoxy-d-xylulose 5-Phosphate Synthase: Insights into the Mechanism and Underlying Intermolecular Interactions" (2016). Chemistry Faculty Publications. 189.
https://digitalcommons.usf.edu/chm_facpub/189