Structure and Function of AApeptides

Document Type

Article

Publication Date

2017

Digital Object Identifier (DOI)

https://doi.org/10.1021/acs.biochem.6b01132

Abstract

The intrinsic drawbacks encountered in bioactive peptides in chemical biology and biomedical sciences have diverted research efforts to the development of sequence-specific peptidomimetics that are capable of mimicking the structure and function of peptides and proteins. Modifications in the backbone and/or the side chain of peptides have been explored to develop biomimetic molecular probes or drug leads for biologically important targets. To expand the family of oligomeric peptidomimetics to facilitate their further application, we recently developed a new class of peptidomimetics, AApeptides based on a chiral peptide nucleic acid backbone. AApeptides are resistant to proteolytic degradation and amenable to enormous chemical diversification. Moreover, they could mimic the primary structure of peptides and also fold into discrete secondary structure such as helices and turn-like structures. Furthermore, they have started to show promise in applications in material and biomedical sciences. Herein, we highlight the structural design and some function of AApeptides and present our perspective on their future development.

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

Biochemistry, v. 56, issue 3, p. 445-447

Share

COinS