A Precise Polyrotaxane Synthesizer

Document Type

Article

Publication Date

2020

Digital Object Identifier (DOI)

https://doi.org/10.1126/science.abb3962

Abstract

Mechanically interlocked molecules are likely candidates for the design and synthesis of artificial molecular machines. Although polyrotaxanes have already found niche applications in exotic materials with specialized mechanical properties, efficient synthetic protocols to produce them with precise numbers of rings encircling their polymer dumbbells are still lacking. We report the assembly line–like emergence of poly[n]rotaxanes with increasingly higher energies by harnessing artificial molecular pumps to deliver rings in pairs by cyclical redox-driven processes. This programmable strategy leads to the precise incorporation of two, four, six, eight, and 10 rings carrying 8+, 16+, 24+, 32+, and 40+ charges, respectively, onto hexacationic polymer dumbbells. This strategy depends precisely on the number of redox cycles applied chemically or electrochemically, in both stepwise and one-pot manners.

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

Science, v. 368, issue 6496, p. 1247-1253

Share

COinS