A Precise Polyrotaxane Synthesizer
Document Type
Article
Publication Date
2020
Digital Object Identifier (DOI)
https://doi.org/10.1126/science.abb3962
Abstract
Mechanically interlocked molecules are likely candidates for the design and synthesis of artificial molecular machines. Although polyrotaxanes have already found niche applications in exotic materials with specialized mechanical properties, efficient synthetic protocols to produce them with precise numbers of rings encircling their polymer dumbbells are still lacking. We report the assembly line–like emergence of poly[n]rotaxanes with increasingly higher energies by harnessing artificial molecular pumps to deliver rings in pairs by cyclical redox-driven processes. This programmable strategy leads to the precise incorporation of two, four, six, eight, and 10 rings carrying 8+, 16+, 24+, 32+, and 40+ charges, respectively, onto hexacationic polymer dumbbells. This strategy depends precisely on the number of redox cycles applied chemically or electrochemically, in both stepwise and one-pot manners.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
Science, v. 368, issue 6496, p. 1247-1253
Scholar Commons Citation
Qiu, Yunyan; Song, Bo; Pezzato, Cristian; Shen, Dengke; Liu, Wenqi; Zhang, Long; Feng, Yuanning; Guo, Qing-Hui; Cai, Kang; Li, Weixingyue; Chen, Hongliang; Nguyen, Minh T.; Shi, Yi; Cheng, Chuyang; Astumian, R. Dean; Li, Xiaopeng; and Stoddart, J. Fraser, "A Precise Polyrotaxane Synthesizer" (2020). Chemistry Faculty Publications. 145.
https://digitalcommons.usf.edu/chm_facpub/145