Document Type


Publication Date



DNA methylation, DNA hydroxymethylation, MDS, AML, CLL, TETs, DNMTs

Digital Object Identifier (DOI)


Epigenetic dysregulation is present in both myeloid and lymphoid disorders, with important differences reported between myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), on one hand, and chronic lymphocytic leukemia (CLL), on the other. Qualitative differences are reported in MDS/AML with gene fusions (e.g. TET1/LCX) and somatic mutations in epigenetic regulators (e.g. DNMT3A, TET2, IDH1/2), while differences in CLL are predominantly quantitative (e.g. DNMT3A, TET2). Indeed, and as supported by studies in animal models, a defective DNA methylation/demethylation process represents a competitive advantage to the myeloid lineage and an early event in MDS/AML, while in the case of CLL, epigenetic events appear later and are associated with disease progression. Finally, in both MDS/AML and CLL, the focal or global DNA methylation/demethylation process is altered and contributes to disease progression and activity. In conclusion, a better understanding of the epigenetic regulators involved in myeloid/lymphoid differentiation, their localization and the co-recruitment of other proteins at specific DNA target sites, could offer us the possibility to modulate hematopoiesis, and control disease initiation and/or progression.

Rights Information

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Was this content written or created while at USF?


Citation / Publisher Attribution

OBM Genetics, v. 2, issue 4, art. 054