Document Type
Article
Publication Date
2015
Digital Object Identifier (DOI)
https://doi.org/10.1039/C5SC00614G
Abstract
A series of highly porous MOFs were deliberately targeted to contain a 12-connected rare earth hexanuclear cluster and quadrangular tetracarboxylate ligands. The resultant MOFs have an underlying topology of ftw, and are thus (4,12)-c ftw-MOFs. This targeted rare earth ftw-MOF platform offers the potential to assess the effect of pore functionality and size, via ligand functionalization and/or expansion, on the adsorption properties of relevant gases. Examination of the gas adsorption properties of these compounds showed that the ftw-MOF-2 analogues, constructed from rigid ligands with a phenyl, naphthyl, or anthracene core exhibited a relatively high degree of porosity. The specific surface areas and pore volumes of these analogs are amongst the highest reported for RE-based MOFs. Further studies revealed that the Y-ftw-MOF-2 shows promise as a storage medium for methane (CH4) at high pressures. Furthermore, Y-ftw-MOF-2 shows potential as a separation agent for the selective removal of normal butane (n-C4H10) and propane (C3H8) from natural gas (NG) as well as interesting properties for the selective separation of n-C4H10 from C3H8 or isobutane (iso-C4H10).
Rights Information
This work is licensed under a Creative Commons Attribution 3.0 License.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
Chemical Science, v. 6, issue 7, p. 4095-4102
Scholar Commons Citation
Luebke, Ryan; Belmabkhout, Youssef; Weseliński, Łukasz J.; Cairns, Amy J.; Alkordi, Mohamed; Norton, George; Wojtas, Lukasz; Adil, Karim; and Eddaoudi, Mohamed, "Versatile Rare Earth Hexanuclear Clusters for the Design and Synthesis of Highly-connected ftw-MOFs" (2015). Chemistry Faculty Publications. 128.
https://digitalcommons.usf.edu/chm_facpub/128