Document Type

Article

Publication Date

2019

Digital Object Identifier (DOI)

https://doi.org/10.1039/C9SC02012H

Abstract

Supramolecular assembly of well-defined discrete architectures has been of great interest due to the tunable properties of these structures in functional materials and bio-mimicking. While metal-coordination-driven assembly has been extensively studied, anion-coordination-driven assembly (ACDA) is just emerging for constructing complex supramolecular structures. Herein two A2nL2n (A = anion, L = ligand; n = 1 or 2) ‘aniono’-supramolecular assemblies, i.e. double helicates and the first anion grid, have been constructed based on the coordination between phosphate (PO43−) anion and a bis–tris(urea) ligand. Moreover, the aniono-grid and double helicate motifs can be readily interconverted under ambient conditions by simply changing the counter-cation. These results redefine the power and scope of ACDA, which may represent a new approach in the assembly of well-defined architectures in parallel with the metal coordination-driven assembly of metallo-supramolecules.

Rights Information

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

Chemical Science, v. 10, issue 25, p. 6278-6284

Share

COinS