Development of an Intact Blood-Brain-Barrier in Brain Tissue Transplants is Dependent on the Site of Transplantation

Document Type

Article

Publication Date

1996

Keywords

Septal forebrain, Transplantation, Bloodbrain barrier, Development

Digital Object Identifier (DOI)

https://doi.org/10.1016/0963-6897(95)02037-3

Abstract

Transplantation of fetal septal forebrain tissue was performed to the anterior chamber of the eye, or intracranially to the rostral hippocampal formation in rats, to evaluate the impact of transplantation site on the development of an intact blood-brain barrier (BBB). The tissue was studied at 1, 2, 3, and 4 wk following transplantation by means of intravenous injection of Trypan blue, which is a vital stain not normally penetrating the BBB, as well as with an antibody specifically directed against the rat BBB, SMI71. In the intraocular septal transplants, there was a significant leakage of Trypan blue 1 wk postgrafting, associated with a few laminin-immunoreactive blood vessels that did not contain any SMI71-immunoreactivity. However, at 2 wk postgrafting, the intraocular grafts exhibited an extensive plexus of thin-walled blood vessels expressing SMI71 immunoreactivity and no Trypan blue leakage. Thus, it appeared that a BBB had developed to some degree by 2 wk postgrafting in oculo. In the intracranial grafts, on the other hand, Trypan blue leakage could be seen as long as 3 wk postgrafting, and a dense plexus of blood vessels with SMI71 immunoreactivity was first seen at 4 wk postgrafting. Thus, the development of Trypan blue impermeability was delayed with 1 to 2 wk in the intracranial versus the intraocular grafts. Control experiments using psychological stress in adult rats as a means to transiently disrupt the BBB revealed that an increase in Trypan blue leakage correlated well with the disappearance of SMI71 immunoreactivity. Taken together, these studies demonstrate that the site of transplantation can influence the development of an intact BBB in neural tissue grafts.

Was this content written or created while at USF?

No

Citation / Publisher Attribution

Cell Transplantation, v. 5, issue 2, p. 305-313

Share

COinS