Document Type
Article
Publication Date
2017
Keywords
convolution/superposition, dose calculations, GPU-accelerated calculations, segmented beams
Digital Object Identifier (DOI)
https://doi.org/10.1002/acm2.12074
Abstract
A superposition/convolution GPU-accelerated dose computation algorithm (the Calculator) has been recently incorporated into commercial software. The algorithm requires validation prior to clinical use. Three photon energies were examined: conventional 6 MV and 15 MV, and 10 MV flattening filter free (10 MVFFF). For a set of IMRT and VMAT plans based on four of the five AAPM Practice Guideline 5a downloadable datasets, ion chamber (IC) measurements were performed on the water-equivalent phantoms. The average difference between the Calculator and IC was −0.3 ± 0.8% (1SD). The same plans were projected on a phantom containing a biplanar diode array. We used the forthcoming criteria for routine gamma analysis, 3% dose–error (global (G) normalization, 2 mm distance to agreement, and 10% low dose cutoff). The γ (3%G/2 mm) average passing rate was 98.9 ± 2.1%. Measurement-guided three-dimensional dose reconstruction on the patient CT dataset (excluding the Lung) resulted in a similar average agreement rate with the Calculator: 98.2 ± 2.0%. The mean γ (3%G/2 mm) passing rate comparing the Calculator to the TPS (again excluding the Lung) was 99.0 ± 1.0%. Because of the significant inhomogeneity, the Lung case was investigated separately. The calculator has an alternate heterogeneity correction mode that can change the results in the thorax for higher-energy beams (15 MV). As this correction is nonphysical and was optimized for simple slab geometries, its application leads to mixed results when compared to the TPS and independent Monte Carlo calculations, depending on the CT dataset and the plan. The Calculator vs. TPS 15 MV Guideline 5a IMRT and VMAT plans demonstrate 96.3% and 93.4% γ (3%G/2 mm) passing rates respectively. For the lower energies, which should be predominantly used in the thoracic region, the passing rates for the same plans and criteria range from 98.6 to 100%. Overall, the Calculator accuracy is sufficient for the intended use.
Rights Information
This work is licensed under a Creative Commons Attribution 4.0 License.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
Journal of Applied Clinical Medical Physics, v. 18, issue 3, p. 73-82
Scholar Commons Citation
Ahmed, Saeed; Hunt, Dylan; Kapatoes, Jeff; Hayward, Robert; Zhang, Geoffrey; Moros, Eduardo G.; and Feygelman, Vladimir, "Validation of a GPU-Based 3D Dose Calculator for Modulated Beams" (2017). Physics Faculty Publications. 77.
https://digitalcommons.usf.edu/phy_facpub/77