Document Type

Article

Publication Date

9-2018

Keywords

age-related macular degeneration, vascular endothelial growth factor, aflibercept, nanoparticles, PLGA

Digital Object Identifier (DOI)

https://doi.org/10.3390/biomedicines6030092

Abstract

Age-related macular degeneration (AMD) is one of the leading causes of blindness in the United States, affecting approximately 11 million patients. AMD is caused primarily by an upregulation of vascular endothelial growth factor (VEGF). In recent years, aflibercept injections have been used to combat VEGF. However, this treatment requires frequent intravitreal injections, leading to low patient compliance and several adverse side effects including scarring, increased intraocular pressure, and retinal detachment. Polymeric nanoparticles have demonstrated the ability to deliver a sustained release of drug, thereby reducing the necessary injection frequency. Aflibercept (AFL) was encapsulated in poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) via double emulsion diffusion. Scanning electron microscopy showed the NPs were spherical and dynamic light scattering demonstrated that they were uniformly distributed (PDI < 1). The encapsulation efficiency and drug loading were 75.76% and 7.76% respectively. In vitro release studies showed a sustained release of drug; 75% of drug was released by the NPs in seven days compared to the full payload released in 24 h by the AFL solution. Future ocular in vivo studies are needed to confirm the biological effects of the NPs. Preliminary studies of the proposed aflibercept NPs demonstrated high encapsulation efficiency, a sustained drug release profile, and ideal physical characteristics for AMD treatment. This drug delivery system is an excellent candidate for further characterization using an ocular neovascularization in vivo model.

Rights Information

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

Biomedicines, v. 6, issue 3, art. 92

Share

COinS