Document Type

Article

Publication Date

1996

Digital Object Identifier (DOI)

https://doi.org/10.1155/S1085337596000024

Abstract

The convergence and the stability of the iterative regularization method for solving variational inequalities with bounded nonsmooth properly monotone (i.e., degenerate) operators in Banach spaces are studied. All the items of the inequality (i.e., the operator A, the “right hand side” f and the set of constraints Ω) are to be perturbed. The connection between the parameters of regularization and perturbations which guarantee strong convergence of approximate solutions is established. In contrast to previous publications by Bruck, Reich and the first author, we do not suppose here that the approximating sequence is a priori bounded. Therefore the present results are new even for operator equations in Hilbert and Banach spaces. Apparently, the iterative processes for problems with perturbed sets of constraints are being considered for the first time.

Rights Information

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

Abstract and Applied Analysis, v. 1, art. 971253

Share

COinS