Document Type
Article
Publication Date
1-2018
Digital Object Identifier (DOI)
https://doi.org/10.1088/2399-6528/aaa4e3
Abstract
Toroidal confinement, which has played a crucial role in magnetized plasmas and Tokamak physics, is emerging as an effective means to obtain useful electronic and optical response in solids. In particular, excitation of surface plasmons in metal nanorings by photons or electrons finds important applications due to the engendered field distribution and electromagnetic energy confinement. However, in contrast to the case of a plasma, often the solid nanorings are multilayered and/or embedded in a medium. The non-simply connected geometry of the torus results in surface modes that are not linearly independent. A three-term difference equation was recently shown to arise when seeking the nonretarded plasmon dispersion relations for a stratified solid torus (Garapati et al 2017 Phys. Rev. B 95 165422). The reported generalized plasmon dispersion relations are here investigated in terms of the involved matrix continued fractions and their convergence properties including the determinant forms of the dispersion relations obtained for computing the plasmon eigenmodes. We also present the intricacies of the derivation and properties of the Green's function employed to solve the three term amplitude equation that determines the response of the toroidal structure to arbitrary external excitations.
Rights Information
This work is licensed under a Creative Commons Attribution 3.0 License.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
Journal of Physics Communications, v. 2, issue 1, art. 015031
Scholar Commons Citation
Garapati, Kumar Vijay; Bagherian, Maryam; Passian, A.; and Koucheckian, Sherwin, "Plasmon Dispersion in a Multilayer Solid Torus in Terms of Three-Term Vector Recurrence Relations and Matrix Continued Fractions" (2018). Mathematics and Statistics Faculty Publications. 20.
https://digitalcommons.usf.edu/mth_facpub/20