Marine Science Faculty Publications

Development of Small Carbonate Banks on the South Florida Platform Margin: Response to Sea Level and Climate Change

Document Type

Article

Publication Date

8-2003

Keywords

carbonate bank, coral reef growth, dry tortugas, florida keys, holocene climate, multibeam bathymetry, reefs

Digital Object Identifier (DOI)

https://doi.org/10.1016/S0025-3227(03)00141-5

Abstract

Geophysical and coring data from the Dry Tortugas, Tortugas Bank, and Riley's Hump on the southwest Florida margin reveal the stratigraphic framework and growth history of these carbonate banks. The Holocene reefs of the Dry Tortugas and Tortugas Bank are approximately 14 and 10 m thick, respectively, and are situated upon Pleistocene reefal edifices. Tortugas Bank consists of the oldest Holocene corals in the Florida Keys with earliest coral recruitment occurring at ∼9.6 cal ka. Growth curves for the Tortugas Bank reveal slow growth (less than 1 mm/yr) until 6.2 cal ka, then a rapid increase to 3.4 mm/yr, until shallow reef demise at ∼4.2 cal ka. Coral reef development at the Dry Tortugas began at ∼6.4 cal ka. Aggradation at the Dry Tortugas was linear, and rapid (∼3.7 mm/yr) and kept pace with sea-level change. The increase in aggradation rate of Tortugas Bank at 6.2 cal ka is attributed to the growth of the Dry Tortugas reefs, which formed a barrier to inimical shelf water. Termination of shallow (less than 15 m below sea level) reef growth at Tortugas Bank at ∼4.2 cal ka is attributed to paleoclimate change in the North American interior that increased precipitation and fluvial discharge. Reef growth rates and characteristics are related to the rate of sea-level rise relative to the position of the reef on the shelf margin, and are additionally modified by hydrographic conditions related to climate change.

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

Marine Geology, v. 199, issue 1-2, p. 45-63

Share

COinS