Marine Science Faculty Publications
Assessment of Storage Lipid Accumulation Patterns in Eucalanoid Copepods from the Eastern Tropical Pacific Ocean
Document Type
Article
Publication Date
11-2014
Keywords
Copepods, Tropical Pacific Ocean, Eucalanidae, Wax esters, Triacylglycerols, Oxygen minimum zone
Digital Object Identifier (DOI)
https://doi.org/10.1016/j.dsr.2014.08.001
Abstract
Members of the copepod family Eucalanidae are widely distributed throughout the world׳s oceans and have been noted for their accumulation of storage lipids in high- and low-latitude environments. However, little is known about the lipid composition of eucalanoid copepods in low-latitude environments. The purpose of this study was to examine fatty acid and alcohol profiles in the storage lipids (wax esters and triacylglycerols) of Eucalanus inermis, Rhincalanus rostrifrons, R. nasutus, Pareucalanus attenuatus, and Subeucalanus subtenuis, collected primarily in the eastern tropical north Pacific near the Tehuantepec Bowl and Costa Rica Dome regions, noted for its oxygen minimum zone, during fall 2007 and winter 2008/2009. Adult copepods and particulate material were collected in the upper 50 m and from 200 to 300 m in the upper oxycline. Lipid profiles of particulate matter were generated to help ascertain information on ecological strategies of these species and on differential accumulation of dietary and modified fatty acids in the wax ester and triacylglycerol storage lipid components of these copepods in relation to their vertical distributions around the oxygen minimum zone. Additional data on phospholipid fatty acid and sterol/fatty alcohol fractions were also generated to obtain a comprehensive lipid data set for each sample. Rhincalanus spp. accumulated relatively large amounts of storage lipids (31–80% of dry mass (DM)), while E. inermis had moderate amounts (2–9% DM), and P. attenuatus and S. subtenuis had low quantities of storage lipid (0–1% DM). E. inermis and S. subtenuis primarily accumulated triacylglycerols (>90% of storage lipids), while P. attenuatus and Rhincalanus spp. primarily accumulated wax esters (>84% of storage lipids). Based on previously generated molecular phylogenies of the Eucalanidae family, these results appear to support genetic predisposition as a major factor explaining why a given species accumulates primarily triacylglycerols or wax esters, and also potentially dictating major fatty acid and alcohol accumulation patterns within the more highly modified wax ester fraction. Comparisons of fatty acid profiles between triacylglycerol and wax ester components in copepods with that in available prey suggested that copepod triacylglycerols were more reflective of dietary fatty acids, while wax esters contained a higher proportion of modified or de novo synthesized forms. Sterols and phospholipid fatty acids were similar between species, confirming high levels of regulation within these components. Similarities between triacylglycerol fatty acid profiles of E. inermis collected in surface waters and at >200 m depth indicate little to no feeding during their ontogenetic migration to deeper, low-oxygen waters.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
Deep Sea Research Part I: Oceanographic Research Papers, v. 93, p. 117-130
Scholar Commons Citation
Cass, Christine J.; Daly, Kendra L.; and Wakeham, Stuart G., "Assessment of Storage Lipid Accumulation Patterns in Eucalanoid Copepods from the Eastern Tropical Pacific Ocean" (2014). Marine Science Faculty Publications. 870.
https://digitalcommons.usf.edu/msc_facpub/870