Marine Science Faculty Publications
Effects of Concentrated Viral Communities on Photosynthesis and Community Composition of Co-Occurring Benthic Microalgae and Phytoplankton
Document Type
Article
Publication Date
8-10-2001
Keywords
benthic microalgae, Moreton Bay, virus-like particles, PAM fluorometry
Digital Object Identifier (DOI)
https://doi.org/10.3354/ame025001
Abstract
Marine viruses have been shown to affect phytoplankton productivity; however, there are no reports on the effect of viruses on benthic microalgae (microphytobenthos). Hence, this study investigated the effects of elevated concentrations of virus-like particles on the photosynthetic physiology and community composition of benthic microalgae and phytoplankton. Virus populations were collected near the sediment surface and concentrated by tangential flow ultrafiltration, and the concentrate was added to benthic and water column samples that were obtained along a eutrophication gradient in the Brisbane River/Moreton Bay estuary, Australia. Photosynthetic and community responses of benthic microalgae, phytoplankton and bacteria were monitored over 7 d in aquaria and in situ. Benthic microalgal communities responded to viral enrichment in both eutrophic and oligotrophic sediments. In eutrophic sediments, Euglenophytes (Euglena sp.) and bacteria decreased in abundance by 20 to 60 and 26 to 66%, respectively, from seawater controls. In oligotrophic sediments, bacteria decreased in abundance by 30 to 42% from seawater controls but the dinoflagellate Gymnodinium sp. increased in abundance by 270 to 3600% from seawater controls, The increased abundance of Gymnodinium sp. may be related to increased availability of dissolved organic matter released from lysed bacteria. Increased (140 to 190% from seawater controls) initial chlorophyll a fluorescence measured with a pulse-amplitude modulated fluorometer was observed in eutrophic benthic microalgal incubations following virus enrichment, consistent with photosystem II damage. Virus enrichment in oligotrophic water significantly stimulated carbon fixation rates, perhaps due to increased nutrient availability by bacterial lysis. The interpretation of data from virus amendment experiments is difficult due to potential interaction with unidentified bioactive compounds within seawater concentrates. However, these results show that viruses are capable of influencing microbial dynamics in sediments.
Was this content written or created while at USF?
No
Citation / Publisher Attribution
Aquatic Microbial Ecology, v. 25, no. 1, p. 1-10
Scholar Commons Citation
Hewson, Ian; O'Neil, Judith M.; Heil, Cynthia A.; Bratbak, Gunnar; and Dennison, William C., "Effects of Concentrated Viral Communities on Photosynthesis and Community Composition of Co-Occurring Benthic Microalgae and Phytoplankton" (2001). Marine Science Faculty Publications. 28.
https://digitalcommons.usf.edu/msc_facpub/28