Marine Science Faculty Publications

Recruitment of the Crabs Eurypanopeus depressus, Rhithropanopeus harrisii, and Petrolisthes armatus to Oyster Reefs: the Influence of Freshwater Inflow

Document Type

Article

Publication Date

2013

Keywords

Stock recruitment, Oyster reefs, Crabs, Freshwater inflow, Salinity

Digital Object Identifier (DOI)

https://doi.org/10.1007/s12237-013-9590-7

Abstract

Oyster reefs provide structural habitat for resident crabs and fishes, most of which have planktonic larvae that are dependent upon transport/retention processes for successful settlement. High rates of freshwater inflow have the potential to disrupt these processes, creating spatial gaps between larval distribution and settlement habitat. To investigate whether inflow can impact subsequent recruitment to oyster reefs, densities of crab larvae and post-settlement juveniles and adults were compared in Estero Bay, Florida, over 22 months (2005–2006). Three species were selected for comparison: Petrolisthes armatus, Eurypanopeus depressus, and Rhithropanopeus harrisii. All are important members of oyster reef communities in Southwest Florida; all exhibit protracted spawning, with larvae present throughout the year; and each is distributed unevenly on reefs in different salinity regimes. Recruitment to oyster reefs was positively correlated with bay-wide larval supply at all five reefs examined. Species-specific larval connectivity to settlement sites was altered by inflow: where connectivity was enhanced by increased inflow, stock–recruitment curves were linear; where connectivity was reduced by high inflows, stock–recruitment curves were asymptotic at higher larval densities. Maximum recruit density varied by an order of magnitude among reefs. Although live oyster density was a good indicator of habitat quality in regard to crab density, it did not account for the high variability in recruit densities. Variation in recruit density at higher levels of larval supply may primarily be caused by inflow-induced variation in larval connectivity, creating an abiotic simulation of what has widely been regarded as density dependence in stock–recruitment curves.

Was this content written or created while at USF?

Yes

Citation / Publisher Attribution

Estuaries and Coasts, v. 36, p. 820-833

Share

COinS