Marine Science Faculty Publications
Document Type
Article
Publication Date
2-1-2009
Keywords
freshwater, evaporation, precipitation
Digital Object Identifier (DOI)
https://doi.org/10.1175/2008JHM993.1
Abstract
In this study, new estimates of monthly freshwater discharge from continents, drainage regions, and global land for the period of 2003–05 are presented. The method uses observed terrestrial water storage change estimates from the Gravity Recovery and Climate Experiment (GRACE) and reanalysis-based atmospheric moisture divergence and precipitable water tendency in a coupled land–atmosphere water mass balance. The estimates of freshwater discharge are analyzed within the context of global climate and compared with previously published estimates. Annual cycles of observed streamflow exhibit stronger correlations with the computed discharge compared to those with precipitation minus evapotranspiration (P − E) in several of the world’s largest river basins. The estimate presented herein of the mean monthly discharge from South America (∼846 km3 month−1) is the highest among the continents and that flowing into the Atlantic Ocean (∼1382 km3 month−1) is the highest among the drainage regions. The volume of global freshwater discharge estimated here is 30 354 ± 1212 km3 yr−1. Monthly variations of global freshwater discharge peak between August and September and reach a minimum in February. Global freshwater discharge is also computed using a global ocean–atmosphere mass balance in order to validate the land–atmosphere water balance estimates and as a measure of global water budget closure. Results show close proximity between the two estimates of global discharge at monthly (RMSE = 329 km3 month−1) and annual time scales (358 km3 yr−1). Results and comparisons to observations indicate that the method shows important potential for global-scale monitoring of combined surface water and submarine groundwater discharge at near-real time, as well as for contributing to contemporary global water balance studies and for constraining global hydrologic model simulations.
Rights Information
Was this content written or created while at USF?
No
Citation / Publisher Attribution
Journal of Hydrometeorology, v. 10, issue 1. p. 22-40
Copyright 2009 American Meteorological SocietyScholar Commons Citation
Syed, Tajdarul H.; Famiglietti, James S.; and Chambers, Don, "GRACE-based Estimates of Terrestrial Freshwater Discharge from Basin to Continental Scales" (2009). Marine Science Faculty Publications. 194.
https://digitalcommons.usf.edu/msc_facpub/194