Marine Science Faculty Publications
Oceanographic and Climatologic Controls on the Compositions and Fluxes of Biogenic Materials in the Water Column and Sediments of the Cariaco Basin Over the Late Holocene
Document Type
Article
Publication Date
2009
Keywords
Biogeochemical fluxes, Cariaco basin, Holocene climate, Organic matter, Productivity, Sediment records, Sediment traps
Digital Object Identifier (DOI)
https://doi.org/10.1016/j.dsr.2008.11.010
Abstract
Materials collected by sediment traps over a 3-y period and sedimentary horizons from a gravity core covering the last 6000 y were used to investigate the effects of climate-related processes such as wind-driven upwelling and regional rainfall on the production, export and burial of particulate organic matter in the Cariaco Basin. A variety of chemical analyses, including organic carbon and nitrogen, biogenic opal, calcite, lithogenic contents, stable carbon isotopic ratios of organic matter and the yields of CuO reaction products derived from distinct biochemicals such as amino acids, fatty acids and lignins, were carried out for this purpose. Principal component analyses were used to investigate the trends in this multivariate data set. These analyses reveal marked temporal differences in the composition of the materials sinking through the water column, which were related to distinct oceanographic and climatic forcings. For example, autochthonous fluxes, characterized by elevated contents of organic carbon and opal as well as high yields of amino acid and fatty acid reaction products, displayed peaks during periods of intense wind-driven upwelling. In contrast, allochthonous materials, characterized by elevated lithogenic contents and elevated yields of lignin-derived products, were more important during periods of high rainfall, low wind and enhanced stratification. In addition to the strong seasonal contrasts, there was significant temporal variability at both shorter (monthly) and longer (inter-annual) time scales. Hence, other factors, such as zooplankton grazing and El Niño effects on local climatology, may also be important. Examination of the gravity core record yielded several significant trends. For example, there was a marked increase in sediment accumulation rates from 5000 to ca. 700 y before present with concomitant increases in the concentrations of organic carbon, opal and most biomarkers. These results suggest that the Cariaco Basin experienced a marked increase in primary productivity and particle flux to the underlying sediments since the Holocene Thermal Maximum. Also within the sedimentary record, we observed distinct variations in the relative contributions of autochthonous and allochthonous organic matter. The frequency of these variations is roughly 1500 y and appears to match ice-rafted debris records from the North Atlantic. Such coincidence indicates cold periods within the Holocene, which are related to minima in insolation, may have led to the southern migration of the inter-tropical convergence zone and the enhancement of wind-driven upwelling, primary productivity and autochthonous organic matter flux to the seabed in the Cariaco Basin. Alternatively, during warm periods, the opposite climatic conditions would have increased both the thermal stratification of the water column and average rainfall in the Cariaco Basin, leading to elevated inputs of allochthonous materials.
Citation / Publisher Attribution
Deep-Sea Research Part I: Oceanographic Research Papers, v. 56, issue 4, p. 614-640
Scholar Commons Citation
Goni, M. A.; Aceves, H.; Benitez-Nelson, B.; Tappa, E.; Thunell, R.; Black, D. E.; Muller-Karger, Frank E.; Astor, Y.; and Varela, R., "Oceanographic and Climatologic Controls on the Compositions and Fluxes of Biogenic Materials in the Water Column and Sediments of the Cariaco Basin Over the Late Holocene" (2009). Marine Science Faculty Publications. 1094.
https://digitalcommons.usf.edu/msc_facpub/1094