Document Type


Publication Date



chicken, IgY, purification, structure, benefits

Digital Object Identifier (DOI)


Besides being a common food component broadly consumed worldwide, egg yolk immunoglobulin Y (IgY) has essential therapeutic potentials. In fact, in a time of ever-increasing risk of antibiotic resistance, it is crucial to find new ways to battle infection, and oral administration of preformed specific antibodies represents one of the most attractive approaches against infection. Infectious diseases of bacterial and viral origin in humans and animals can be controlled and passively cured by orally applied IgYs isolated from chicken egg yolks. Despite multiple obvious advantages of oral administration of IgY, harvesting IgY from egg yolk in a pure form is a challenging task.

In this study, we developed a fast, simple, cost-effective, and efficient protocol for IgY isolation from chicken egg yolks. First, egg yolk was collected and diluted with 5 volumes of cold distilled water, homogenized, pH adjusted, and centrifuged. Next, the supernatant was collected, to which caprylic acid at concentration of 2% v/v was added, followed by pH adjustment to pH 5.0, centrifugation at 4°C, and collection of the resulting supernatant. This step was repeated twice, with adding 2% v/v of caprylic acid each time. The final supernatant was concentrated using ultrafiltration, and the IgY purity and activities were checked by SDS-PAGE, western blotting, and ELISA. The sequential (2, 2, 2%) addition of caprylic acid yielded IgY with a purity of 63.5, 90.6, and 95.8%, respectively, and reached 97.9% after ultrafiltration at pH 9.0. The IgY activity increased exponentially to reach 99% after the ultrafiltration step.

The proposed caprylic-acid-based protocol of IgY purification from the yolk of chicken eggs seems to be simple, fast, direct, and very cheap. This indicates that this protocol has great potential for scale-up processing.

Rights Information

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Was this content written or created while at USF?


Citation / Publisher Attribution

Poultry Science, v. 100, issue 3, art. 100956