Japanese Encephalitis Virus – Exploring the Dark Proteome and Disorder–function Paradigm

Document Type


Publication Date



capsid protein, CD spectroscopy, disorder–function paradigm, intrinsically disordered proteins, protein–lipid interaction

Digital Object Identifier (DOI)



Japanese encephalitis virus (JEV) is one of the major causes of viral encephalitis all around the globe. Approximately 3 billion people in endemic areas are at risk of Japanese encephalitis. To develop a wholistic understanding of the viral proteome, it is important to investigate both its ordered and disordered proteins. However, the functional and structural significance of disordered regions in the JEV proteome has not been systematically investigated as of yet. To fill this gap, we used here a set of bioinformatics tools to analyze the JEV proteome for the predisposition of its proteins for intrinsic disorder and for the presence of the disorder-based binding regions (also known as molecular recognition features, MoRFs). We also analyzed all JEV proteins for the presence of the probable nucleic acid-binding (DNA and RNA) sites. The results of these computational studies are experimentally validated using JEV capsid protein as an illustrative example. In agreement with bioinformatic analysis, we found that the N-terminal region of the JEV capsid (residues 1–30) is intrinsically disordered. We showed that this region is characterized by the temperature response typical for highly disordered proteins. Furthermore, we have experimentally shown that this disordered N-terminal domain of a capsid protein has a noticeable ‘gain-of-structure’ potential. In addition, using DOPS liposomes, we demonstrated the presence of pronounced membrane-mediated conformational changes in the N-terminal region of JEV capsid. In our view, this disorder-centric analysis would be helpful for a better understanding of the JEV pathogenesis.

Was this content written or created while at USF?


Citation / Publisher Attribution

The FEBS Journal, v. 287, issue 17, p. 3751-3776