Alternative Title

NCKRI Symposium 2: Proceedings of the Thirteenth Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst

Files

Download

Download Full Text (2.5 MB)

Publication Date

May 2013

Abstract

The persistent drought of the 2012 summer in the Midwestern United States significantly impacted the health and vigor of Illinois' crops. An unforeseen outcome of the extreme drought was that it provided a rare opportunity to examine and characterize the bedrock surface and underlying karst aquifer within the Driftless Area of northwestern Illinois. Complex networks of vegetated lines and polygonal patterns, herein referred to as crop lines, crisscrossed the dry summer landscape of Jo Daviess County. Initially, the crop lines were examined and photographed using a handheld digital camera on the ground and from a small aircraft at 300 meters altitude above ground level (AGL). The orientations, widths and horizontal separations of the lines were measured. Crop lines and their patterns and orientations were compared with those of crevices in outcrops, road cuts and quarries, and with lineaments seen in LiDAR elevation data of Jo Daviess County. Primarily confined to alfalfa fields and, to a lesser extent, soybeans and corn, the crop lines are the result of a combination of extremely dry conditions, and a thin soil zone overlying fractured and creviced Galena Dolomite bedrock. The plants forming the lines tend to grow denser, taller (0.5 m vs 0.15 m) and darker/greener than those in adjacent areas. Alfalfa taproots are the deepest of the aforementioned crops extending up to 7 m below the surface. Groundwater and associated soil moisture within the vadose zone present within bedrock fractures and crevices provide the necessary moisture to sustain the overlying healthy plants, while the remaining area of the field exhibits stunted and sparse plant growth. Overall, the crop lines are a reflection of the creviced pattern of the underlying karst bedrock and associated karst aquifer, and reveal the degree and extent of karstification in eastern Jo Daviess County. The crop lines were consistent with the angular lines of adjacent streams that show a rectangular drainage pattern. Stream patterns like these are well known and are due to drainage controlled by crevice/fracture patterns in the top of bedrock. The lines appear to have been formed by two sets of fractures trending roughly north-south and east-west with occasional cross-cutting fractures/crevices. The east-west trending lines are consistent with tension joints, and the north-south lines are consistent with the shear joints identified by earlier researchers. The trends of the crop lines, tension and shear joints are similar to those of lineaments identified from LiDAR elevation data in the same area (N 20° W, and N 70° W and N 70° E) and coincide with the occurrence of karst features throughout eastern Jo Daviess County. The pattern observed in the crop lines closely mimics the fracture/crevice patterns of the bedrock surface. The widths and extent of the lines may be used as a surrogate for the karst features present on the bedrock surfaces. Crop lines, coupled with solution-enlarged crevices seen in bedrock exposures, yield a three dimensional view of the bedrock crevice-fracture system, and ultimately could provide a more complete and accurate model of the karst aquifer in the study area and similar karst areas in the Midwestern United States and perhaps in other karst regions of the world. -- Authors Open Access - Permission by Publisher See Extended description for more information.

Type

Conference Proceeding

Publisher

University of South Florida

Identifier

K26-04789

Share

COinS
 

Rights Statement

In Copyright
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.