Alternative Title
NCKRI - Special Paper 1
Files
Download Full Text (10.1 MB)
Publication Date
January 2007
Abstract
This book, the first in a new series by the National Cave and Karst Research Institute, draws on international examples and the international experience of author Dr. Alexander Klimchouk to firmly establish hypogene speleogenesis as a major and wide-spread phenomenon. This book carefully outlines the characteristics of hypogenic karst aquifers, independent of their varied geochemistry, and provides practical guidance in recognizing such systems through more than 60 figures and 19 pages of color photos. Dr. Klimchouk concludes his book with a chapter that reevaluates karst management problems and economic resources relative to hypogenic processes. Hypogene Speleogenesis will be the starting point of many karst investigations for many years to come.
This work was prepared in 2006-2007 when the author was staying with the National Cave and Karst Research Institute (USA) as a Distinguished Visiting Scholar. Minor edits and revisions were made in 2011. The author's principal affiliation: Ukrainian Institute of Speleology and Karstology, Ministry of Science and Education of Ukraine and the National Academy of Science of Ukraine. AbstractThis book provides an overview of the principal environments, main processes and manifestations of hypogenic speleogenesis, and refines the relevant conceptual framework. It consolidates the notion of hypogenic karst as one of the two major types of karst systems (the other being epigenetic karst). Karst is viewed in the context of regional groundwater flow systems, which provide the systematic transport and distribution mechanisms needed to produce and maintain the disequilibrium conditions necessary for speleogenesis. Hypogenic and epigenic karst systems are regularly associated with different types, patterns and segments of flow systems, characterized by distinct hydrokinetic, chemical and thermal conditions. Epigenic karst systems are predominantly local systems, and/or parts of recharge segments of intermediate and regional systems. Hypogenic karst is associated with discharge regimes of regional or intermediate flow systems. Various styles of hypogenic caves that were previously considered unrelated, specific either to certain lithologies or chemical mechanisms are shown to share common hydrogeologic genetic backgrounds. In contrast to the currently predominant view of hypogenic speleogenesis as a specific geochemical phenomenon, the broad hydrogeological approach is adopted in this book. Hypogenic speleogenesis is defined with reference to the source of fluid recharge to the cave-forming zone, and type of flow system. It is shown that confined settings are the principal hydrogeologic environment for hypogenic speleogenesis. However, there is a general evolutionary trend for hypogenic karst systems to lose their confinement due to uplift and denudation and due to their own expansion. Confined hypogenic caves may experience substantial modification or be partially or largely overprinted under subsequent unconfined (vadose) stages, either by epigenic processes or continuing unconfined hypogenic processes, especially when H 2S dissolution mechanisms are involved. Hypogenic confined systems evolve to facilitate cross-formational hydraulic communication between common aquifers, or between laterally transmissive beds in heterogeneous soluble formations, across cave-forming zones. The latter originally represented low-permeability, separating units supporting vertical rather than lateral flow. Layered heterogeneity in permeability and breaches in connectivity between different fracture porosity structures across soluble formations are important controls over the spatial organization of evolving ascending hypogenic cave systems. Transverse hydraulic communication across lithological and porosity system boundaries, which commonly coincide with major contrasts in water chemistry, gas composition and temperature, is potent enough to drive various disequilibrium and reaction dissolution mechanisms. Hypogenic speleogenesis may operate in both carbonates and evaporites, but also in some clastic rocks with soluble cement. Its main characteristic is the lack of genetic relationship with groundwater recharge from the overlying or immediately adjacent surface. It may not be manifest at the surface at all, receiving some expression only during later stages of uplift and denudation. In many instances, hypogenic speleogenesis is largely climate-independent. There is a specific hydrogeologic mechanism inherent in hypogenic transverse speleogenesis (restricted input/output) that suppresses the positive flow-dissolution feedback and speleogenetic competition in an initial flowpath network. This accounts for the development of more pervasive channeling and maze patterns in confined settings where appropriate structural prerequisites exist. As forced-flow regimes in confined settings are commonly sluggish, buoyancy dissolution driven by either solute or thermal density differences is important in hypogenic speleogenesis. In identifying hypogenic caves, the primary criteria are morphological (patterns and meso-morphology) and hydrogeological (hydrostratigraphic position and recharge/flow pattern viewed from the perspective of the evolution of a regional groundwater flow system). Elementary patterns typical for hypogenic caves are network mazes, spongework mazes, irregular chambers and isolated passages or crude passage clusters. They often combine to form composite patterns and complex 3-D structures. Hypogenic caves are identified in various geological and tectonic settings, and in various lithologies. Despite these variations, resultant caves demonstrate a remarkable similarity in cave patterns and meso-morphology, which strongly suggests that the hydrogeologic settings were broadly identical in their formation. Presence of the characteristic morphologic suites of rising flow with buoyancy components is one of the most decisive criteria for identifying hypogenic speleogenesis, which is much more widespread than was previously presumed. Hypogenic caves include many of the largest, by integrated length and by volume, documented caves in the world. The refined conceptual framework of hypogenic speleogenesis has broad implications in applied fields and promises to create a greater demand for karst and cave expertise by practicing hydrogeology, geological engineering, economic geology, and mineral resource industries. Any generalization of the hydrogeology of karst aquifers, as well as approaches to practical issues and resource prospecting in karst regions, should take into account the different nature and characteristics of hypogenic and epigenic karst systems. Hydraulic properties of karst aquifers, evolved in response to hypogenic speleogenesis, are characteristically different from epigenic karst aquifers. In hypogenic systems, cave porosity is roughly an order of magnitude greater, and areal coverage of caves is five times greater than in epigenic karst systems. Hypogenic speleogenesis commonly results in more isotropic conduit permeability pervasively distributed within highly karstified areas measuring up to several square kilometers. Although being vertically and laterally integrated throughout conduit clusters, hypogenic systems, however, do not transmit flow laterally for considerable distances. Hypogenic speleogenesis can affect regional subsurface fluid flow by greatly enhancing initially available cross- formational permeability structures, providing higher local vertical hydraulic connections between lateral stratiform pathways for groundwater flow, and creating discharge segments of flow systems, the areas of low-fluid potential recognizable at the regional scale. Discharge of artesian karst springs, which are modern outlets of hypogenic karst systems, is often very large and steady, being moderated by the high karstic storage developed in the karstified zones and by the hydraulic capacity of an entire artesian system. Hypogenic speleogenesis plays an important role in conditioning related processes such as hydrothermal mineralization, diagenesis, and hydrocarbon transport and entrapment. An appreciation of the wide occurrence of hypogenic karst systems, marked specifics in their origin, development and characteristics, and their scientific and practical importance, calls for revisiting and expanding the current predominantly epigenic paradigm of karst and cave science. Open Access See Extended description for more information.
Keywords
Geology
Type
Book
Publisher
National Cave and Karst Research Institute
Identifier
K26-01547
Recommended Citation
Klimchouk, Alexander Borisovich, "Hypogene speleogenesis: Hydrogeological and Morphogenetic Perspective NCKRI - Special Paper 1" (2007). KIP Monographs. 13.
https://digitalcommons.usf.edu/kip_monographs/13