Determination of the conduit structure in a karst aquifer based on tracer data—Lurbach system, Austria
Files
Download Full Text
Publication Date
1-27-2012
Publication Title
Hydrological Processes
Volume Number
27
Issue Number
2
Abstract
A structure model was used to analyse solute-transport parameter estimates based on tracer breakthrough curves. In the model system, groundwater flow is envisioned to be organised in a complex conduit network providing a variety of short circuits with relative small carrying capacities along different erosion levels. The discharge through the fully filled conduits is limited owing to void geometries and turbulent flow; thus, a hierarchic overflow system evolves where conduits are (re-)activated or dried up depending on the flow condition. Exemplified on the Lurbach–Tanneben karst aquifer, the applicability of the model approach was tested. Information derived from multi-tracer experiments performed at different volumetric flow rates enabled to develop a structural model of the karst network, under constraint of the geomorphological and hydrological evolution of the site. Depending on the flow rate, groundwater is divided into up to eight flow paths. The spatial hierarchy of flow paths controls the sequence of flow path activation. Conduits of the topmost level are strongly influenced by reversible alteration processes. Sedimentation or blocking causes an overflow of water to the next higher conduit. Flow path specific dissolutional denudation rates were estimated using the temporal development of the partial discharge.
Keywords
Karst, Groundwater flow, Solute transport, Geochemical modeling, Hydrology
Document Type
Article
Digital Object Identifier (DOI)
https://doi.org/10.1002/hyp.9221
Language
English
Recommended Citation
Kübeck, Christine; Maloszewski, Piotr Jan; and Benischke, Ralf, "Determination of the conduit structure in a karst aquifer based on tracer data—Lurbach system, Austria" (2012). KIP Articles. 8602.
https://digitalcommons.usf.edu/kip_articles/8602
