White-Nose Syndrome Inflicts Lasting Injuries to the Wings of Little Brown Myotis (Myotis lucifugus)

Files

Link to Full Text

Download Full Text

Publication Date

12-1-2009

Publication Title

Acta Chiropterologica

Volume Number

11

Issue Number

2

Abstract

White-nose syndrome (WNS) is an emerging disease causing massive mortality of hibernating bats in the northeastern United States. At hibernacula, bats affected with WNS typically exhibit growth of a white psychrophylic fungus (Geomyces destructans) on the nose, wings and ears; many individuals seem to prematurely die of starvation owing to depleted fat reserves. Conspicuous scarring and necrosis of the wings on WNS-affected bats that survive hibernation may have lasting consequences for survival and reproductive success during the active season. We monitored two maternity colonies of little brown myotis, Myotis lucifugus, in Massachusetts and New Hampshire from 14 May to 8 August 2008 to assess body conditions after expected exposure to WNS over the previous winter. We developed a 4-point wing damage index (WDI = 0 to 3) to assess the incidence and severity of wing damage in the months following emergence from hibernation. Severe wing damage was observed up to 4 June and moderate damage was observed through 9 July. Light wing damage was observed on both adult and juvenile bats throughout the study period, but was not exclusively attributed to WNS. The most severe wing damage was associated with a lower body mass index which may reflect reduced foraging success. Overall, reproductive rate was 85.1% in 2008; slightly lower than reported in previous studies. The incidence, timing, and geographic range of wing damage observed on little brown myotis in 2008 correspond to the occurrence of WNS at hibernacula. Monitoring wing conditions of affected and healthy bats will be important tool for assessing the spread of this disease and for establishing baseline data for unaffected bats. The simple scale we propose should be useful for monitoring wing conditions in any bat species.

Document Type

Article

Digital Object Identifier (DOI)

https://doi.org/10.3161/150811009X485684

Share

 
COinS