Virally-vectored vaccine candidates against white-nose syndrome induce anti-fungal immune response in little brown bats (Myotis lucifugus)

Files

Link to Full Text

Download Full Text

Publication Date

January 2019

Abstract

White-nose syndrome (WNS) caused by the fungus, Pseudogymnoascus destructans (Pd) has killed millions of North American hibernating bats. Currently, methods to prevent the disease are limited. We conducted two trials to assess potential WNS vaccine candidates in wild-caught Myotis lucifugus. In a pilot study, we immunized bats with one of four vaccine treatments or phosphate-buffered saline (PBS) as a control and challenged them with Pd upon transfer into hibernation chambers. Bats in one vaccine-treated group, that received raccoon poxviruses (RCN) expressing Pd calnexin (CAL) and serine protease (SP), developed WNS at a lower rate (1/10) than other treatments combined (14/23), although samples sizes were small. The results of a second similar trial provided additional support for this observation. Bats vaccinated orally or by injection with RCN-CAL and RCN-SP survived Pd challenge at a significantly higher rate (P = 0.01) than controls. Using RT-PCR and flow cytometry, combined with fluorescent in situ hybridization, we determined that expression of IFN-γ transcripts and the number of CD4 + T-helper cells transcribing this gene were elevated (P < 0.10) in stimulated lymphocytes from surviving vaccinees (n = 15) compared to controls (n = 3). We conclude that vaccination with virally-vectored Pd antigens induced antifungal immunity that could potentially protect bats against WNS.

Document Type

Article

Notes

Scientific Reports, Vol. 9 (2019).

Identifier

SFS0071548_00001

Share

 
COinS