Spring response to precipitation events using δ18O and δ2H in the Tanour catchment, NW Jordan

Files

Link to Full Text

Download Full Text

Publication Date

January 2016

Abstract

The Tanour spring is one of the several karst springs located in the northern part of Jordan. Water samples from the Tanour spring and precipitation were collected in the area of Ajloun in NW Jordan for the analysis of stable oxygen and hydrogen isotopes to evaluate the spring response to precipitation events. Rainwater and snow samples were collected from different elevations during winters of 2013–2014 and 2014–2015. In addition, spring samples were collected between December 2014 and March 2015. δ18O values in rainwater vary from −3.26 to −17.34 ‰ (average: −7.84 ± 3.23 ‰), while δ2H values range between −4.4 and −110.4 ‰ (average: −35.7 ± 25.0 ‰). Deuterium excess ranges from 17.8 to 34.1 ‰ (average: 27.1 ± 4.0 ‰). The Local Meteoric Water Line for the study area was calculated to be δ2H = 7.66*δ18O + 24.43 (R2 = 0.98). Pre-event spring discharge showed variation in δ18O (range −6.29 to −7.17 ‰; average −6.58 ± 0.19 ‰) and δ2H values (range −28.8 to −32.7 ‰; average: −30.5 ± 1.0 ‰). In contrast, δ18O and δ2H rapidly changed to more negative values during rainfall and snowmelt events and persisted for several days before returning to background values. Spring water temperature, spring discharge, and turbidity followed the trend in isotopic composition during and after the precipitation events. The rapid change in the isotopic composition, spring discharge, water temperature, and turbidity in response to recharge events is related to fast water travel times and low storage capacity in the conduit system of the karst aquifer. Based on the changes in the isotopic composition of spring water after the precipitation events, the water travel time in the aquifer is in the order of 5–11 days.

Keywords

Deuterium Excess, Hydrogen-2, Jordan, Karst System, Meteoric Water Line, Oxygen-18, Precipitation, Water Travel Time

Document Type

Article

Notes

Isotopes in Environmental and Health Studies, Vol. 52, no. 6 (2016).

Identifier

SFS0069965_00001

Share

 
COinS