The role of near-surface cavities in the carbon dioxide cycle of karst areas: evidence from the Carburangeli Cave Natural Reserve (Italy)
Files
Download Full Text
Publication Date
May 2012
Abstract
Hydrological, chemical and meteorological data collected during the years 2006–2007 at Carburangeli Cave (Italy) have provided new insights on the near-surface cycle of carbon dioxide, particularly concerning the role played by fractures and karst conduits. Carbon dioxide is trapped in the underground atmosphere essentially when its temperature is lower than the outer one. By contrast, convective air circulation disperses all the excess CO2 in the external environment when the thermal differential is inverted. The network of fractures and karst conduits then works, in the vadose zone, as a re-circulator of CO2 from the soil to the atmosphere. The total amount of CO2 fixed in the underground is controlled, during the wet season, by the amount of infiltrating waters, which act as the main carrier of CO2 in the subsoil. By contrast, during the dry season, gravitational drainage is responsible for the accumulation of carbon dioxide in the underground voids. The quantitative balance demonstrated that the degassed CO2 amounts are one order of magnitude higher than the dissolved CO2. In light of this, if the near-surface outgassing processes are not taken into account, CO2 budgets may be affected by significant errors.
Keywords
Karst Conduits, Carbon Dioxide, Carburangeli Cave
Document Type
Article
Notes
Environmental Earth Sciences, Vol. 67, no. 8 (2012-05-04).
Identifier
SFS0036380_00001
Recommended Citation
Madonia, Paolo; Bellanca, Adriana; and Di Pietro, Rosario, "The role of near-surface cavities in the carbon dioxide cycle of karst areas: evidence from the Carburangeli Cave Natural Reserve (Italy)" (2012). KIP Articles. 4607.
https://digitalcommons.usf.edu/kip_articles/4607