Response of ice caves to weather extremes in the southeastern Alps, Europe

Files

Link to Full Text

Download Full Text

Publication Date

January 2016

Abstract

High altitude karstic environments often preserve permanent ice deposits within caves, representing the lesser-known portion of the cryosphere. Despite being not so widespread and easily reachable as mountain glaciers and ice caps, ice caves preserve much information about past environmental changes and climatic evolution. We selected 1111 ice caves from the existing cave inventory, predominantly but not exclusively located in the periglacial domain where permafrost is not dominant (i.e., with mean annual air temperature < 3 °C but not in a permafrost environment). The influence of climate and topography on ice cave distribution is also investigated. In order to assess the thickness and the inner structure of the deposits, we selected two exemplary ice caves in the Canin massif (Julian Alps) performing several multifrequency GPR surveys. A strong influence of global and local climate change in the evolution of the ice deposits has been particularly highlighted in the dynamic ice cave type, especially in regard to the role of weather extremes. The natural response of ice caves to a warming climate could lead to a fast reduction of such ice masses. The increased occurrence of weather extremes, especially warmer and more intense precipitation caused by higher mean 0 °C-isotherms, could in fact be crucial in the future mass balance evolution of such permanent ice deposits.

Keywords

Ice Caves, Permafrost, Weather Extremes, Climate, Gpr

Document Type

Article

Notes

Geomorphology, Vol. 261 (2016).

Identifier

SFS0071373_00001

Share

 
COinS