Geologic framework and hydrogeologic characteristics of the Edwards aquifer outcrop (Barton Springs segment), northeastern Hays and southwestern Travis Counties, Texas

Ted A. Small
John A. Hanson
Nico M. Hauwert

Please visit https://digitalcommons.usf.edu/kip_articles/2277 to view this article.

Abstract

The hydrogeologic subdivisions within the Barton Springs segment of the Edwards aquifer outcrop in northeastern Hays and southwestern Travis Counties generally are porous and permeable. The most porous and permeable appear to be hydrogeologic subdivision VI, the Kirschberg evaporite member of the Kainer Formation; and hydrogeologic subdivision III, the leached and collapsed members, undivided, of the Person Formation. Hydrogeologic subdivision II, the cyclic and marine members, undivided, of the Person Formation, also is quite porous and permeable in Hays County. The porosity of the rocks in the Edwards aquifer outcrop is related to depositional or diagenetic elements along specific stratigraphic horizons (fabric selective) and to dissolution and structural elements that can occur in any lithostratigraphic horizon (not fabric selective). Permeability depends on the physical properties of the rock such as pore size, shape, distribution, fissuring, dissolution, and interconnection of pores and vugs. The Edwards aquifer rocks that crop out in the Barton Springs segment of the Edwards aquifer generally have the same lithologic characteristics as the Edwards aquifer rocks that crop out in Comal and southwestern Hays Counties. However, in the northeastern part of the segment in Travis County, the rock unit that is apparently equivalent to the basal nodular member of the Kainer Formation is called the Walnut Formation. Because the units appear to be stratigraphically and lithologically equivalent, the basal nodular member is used instead of the Walnut Formation for this report. Essentially all of hydrogeologic subdivision II, which is about 70 feet thick in Hays County, is missing in Travis County. In the Barton Springs segment of the Edwards aquifer, the aquifer probably is most vulnerable to surface contamination in the rapidly urbanizing areas on the Edwards aquifer outcrop. Contamination can result from spills or leakage of hazardous materials; or runoff on the intensely faulted and fractured, karstic limestone outc