Geologic structure of the Edwards (Balcones Fault Zone) Aquifer

Files

Link to Full Text

Download Full Text

Publication Date

January 2019

Abstract

The Edwards (Balcones Fault Zone) Aquifer is structurally controlled by the system of normal faults following the Balcones Escarpment, with major domains, including contributing, recharge (unconfined), and artesian (confined) zones, dictated by the large-displacement (50 m to >250 m throw) normal faults and depth of erosion. Faults and extension fractures, in many cases enhanced by dissolution, localize recharge and flow within the Balcones fault zone and into the subsurface of the artesian zone. Juxtaposition of the Edwards with other aquifers provides avenues for interaquifer communication, while juxtaposition against impermeable layers and concentration of clay and mineralization along faults locally produce fault seals for compartmentalization and confinement. Fault block deformation, including small faults and extension fractures, leads to aquifer permeability anisotropy. Faults also locally provide natural pathways for groundwater discharge through springs above the confined (artesian) zone. Although the importance of joints and faults in the Edwards (Balcones Fault Zone) Aquifer system is recognized, there has not been a systematic analysis of the meter-scale structures in the Edwards and associated confining units and their influence on groundwater flow. Here, we review evidence from several key areas showing that an analysis of faults and fractures in the Edwards (Balcones Fault Zone) Aquifer and associated aquifers and confining units is needed to characterize structural fabrics and assess the permeability architecture critical for the next generation of groundwater modeling of the aquifer.

Document Type

Article

Identifier

SFS0072124_00001

Share

 
COinS