Files

Download

Download Full Text (357 KB)

Publication Date

July 1995

Publication Title

Geophysics

Volume Number

60

Issue Number

4

Abstract

Gravity gradient profiles across subsurface structures that are approximately 2-D contain diagnostic information regarding depth, size, and structure (geometry). Gradient space plots, i.e., plots of horizontal gradient versus vertical gradient, present the complete magnitude and phase information in the gradient pro- files simultaneously. Considerable previous work demonstrates the possibility for complete structural interpretation of a truncated plate model from the gradient space plot. The qualitative and quantitative diagnostic information contained in gradient space plots is general, however. Examination of the characteristics of gradient space plots reveals that 2-D structures are readily classified as extended or localized. For example, the truncated plate model is an extended model, while the faulted plate model is a localized model. Comparison of measured or calculated gradient space plots to a model gradient space plot catalog allows a rapid, qualitative determination of structure or geometry. "Corners" of a polygonal cross-section model are then determined as profile points corresponding to maxima on the vertical gradient profile. A generalized approach to structural interpretation from gravity data consists of (1) determining vertical and horizontal gradient profiles perpendicular to the strike of a 2-D gravity anomaly, (2) determining the structural geometry from the gradient space plot, and (3) locating profile positions of structural corners from the vertical gradient profile. This generalized inversion procedure requires no quantitative information or as- sumption regarding density contrasts. Iterative for- ward modeling then predicts the density contrasts. Application of this generalized gravity gradient inver- sion procedure to high quality gravity data results in an effective density prediction consistent with measured near-surface densities and the known increase in den- sity with depth in deep sedimentary basins.

Document Type

Article

Language

English

Identifier

K26-01422

Share

 
COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.