Developing Efficient Procedures for Automated Sinkhole Extraction from Lidar DEMs

Files

Link to Full Text

Download Full Text

Publication Date

June 2013

Abstract

Sinkhole detection in karst areas is usually difficult through remote sensing image interpretation. We present an efficient approach to extract mature sinkholes from lidar DEM. First, an adaptive Wiener filter (AWF) and hierarchical watershed segmentation (HWS) are applied to identify all local depression or potential sinkholes. Second, a hole-filling algorithm is applied to the potential sinkholes, and nine spatial features are extracted. Finally, the random forest classifier is used to select true sinkholes from all potential sinkholes. Our results show that this approach is efficient for detecting mature sinkholes from lidar data, and it can be used for risk assessment and hazard preparedness in karst areas.

Keywords

Sinkhole Detection, Karst Areas, Adaptive Wiener Filter (AWF), Hierarchal Watershed Segmentation (HWS)

Document Type

Article

Notes

Photogrammetric Engineering & Remote Sensing, Vol. 6 (2013-06-01).

Identifier

SFS0055975_00001

Share

 
COinS