Files

Download

Download Full Text (17.8 MB)

Publication Date

4-1-2021

Publication Title

Journal of Hydrology: Regional Studies

Volume Number

34

Abstract

Study region Buda Thermal Karst system, Hungary. Study focus The pilot area has high geothermal potential characterized by prominent thermal anomalies, such as thermal springs and spas which tap the Triassic carbonate aquifers. Therefore, numerical simulations were carried out to examine the temperature field and flow pattern considering three successive heat transport mechanisms: thermal conduction, forced and mixed thermal convection in order to highlight the role of different driving forces of groundwater flow in the Buda Thermal Karst. New hydrological insights for the region Compared to thermal conduction, topography-driven heat advection increases the surface heat flux. The superimposed effect of free thermal convection facilitates the formation of time-dependent mixed thermal convection from the deep carbonate layers. The Nusselt number varied between Nu = 1.56 and 5.25, while the recharge rate (R) ranged from R = 178 mm/yr to 250 mm/yr. Radiogenic heat production and hydraulically conductive faults have only a minor influence on the basin-scale temperature field and flow pattern. Boundary conditions prescribed on the temperature and pressure can considerably affect the numerical results. In each scenario, independently of the model parameters, time-dependent mixed thermal convection evolved both in the deep and the confined parts of the karstified carbonates of the Buda Thermal Karst system.

Document Type

Article

Digital Object Identifier (DOI)

https://doi.org/10.1016/j.ejrh.2021.100783

Language

English

Share

 
COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.