Spectral Mixture Analysis for Mapping Abundance of Urban Surface Components from the Terra/ASTER Data
Document Type
Article
Publication Date
3-18-2008
Keywords
spectral mixture analysis, urban surface component, ASTER, artificial neural networks, least square solution
Digital Object Identifier (DOI)
https://doi.org/10.1016/j.rse.2007.07.005
Abstract
Using a linear unconstrained least squares (LSS) method and a non-linear artificial neural network (ANN) algorithm, we conducted a spectral mixture analysis to the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) image data in Yokohama city, Japan, for mapping the abundance of the urban surface components. ASTER is a newly developed research facility instrument. The regions of interest of four endmembers (Vegetation, Soil, High/Low albedo impervious surfaces) were determined in Maximum Noise Fraction (MNF) feature spaces. The spectral signatures of the four endmembers were then extracted from the ASTER VNIR (15-m resolution) and SWIR (30-m resolution) imagery by referring to high spatial resolution airborne imagery (The Airborne Imaging Spectrometer, AISA, with 2-m resolution) and land use/land cover map for training and testing the LSS and ANN algorithms. Experimental results indicate that ASTER VNIR and SWIR image data are capable of mapping the abundances of urban surface components with a reasonable accuracy and that the ANN outperforms the unconstrained LSS in this spectral mixture analysis.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
Remote Sensing of Environment, v. 112, issue 3, p. 939-954
Scholar Commons Citation
Pu, Ruiliang; Gong, Peng; Michishita, Ryo; and Sasagawa, Todashi, "Spectral Mixture Analysis for Mapping Abundance of Urban Surface Components from the Terra/ASTER Data" (2008). School of Geosciences Faculty and Staff Publications. 374.
https://digitalcommons.usf.edu/geo_facpub/374