Document Type
Article
Publication Date
12-12-2016
Keywords
hyperspectral imagery, anomaly detection, fire mapping
Digital Object Identifier (DOI)
https://doi.org/10.3390/geosciences6040056
Abstract
Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant spectral signals provide a great potential for classification and anomaly detection. In this study, two real hyperspectral data sets were used for anomaly detection. One data set was an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data covering the post-attack World Trade Center (WTC) and anomalies are fire spots. The other data set called SpecTIR contained fabric panels as anomalies compared to their background. Existing anomaly detection algorithms including the Reed–Xiaoli detector (RXD), the blocked adaptive computation efficient outlier nominator (BACON), the random selection based anomaly detector (RSAD), the weighted-RXD (W-RXD), and the probabilistic anomaly detector (PAD) are reviewed here. The RXD generally sets strict assumptions to the background, which cannot be met in many scenarios, while BACON, RSAD, and W-RXD employ strategies to optimize the estimation of background information. The PAD firstly estimates both background information and anomaly information and then uses the information to conduct anomaly detection. Here, the BACON, RSAD, W-RXD, and PAD outperformed the RXD in terms of detection accuracy, and W-RXD and PAD required less time than BACON and RSAD
Rights Information
This work is licensed under a Creative Commons Attribution 4.0 License.
Was this content written or created while at USF?
Yes
Citation / Publisher Attribution
Geosciences, v. 6, issue 4, art. 56
Scholar Commons Citation
Guo, Qiandong; Pu, Ruiliang; and Cheng, Jun, "Anomaly Detection from Hyperspectral Remote Sensing Imagery" (2016). School of Geosciences Faculty and Staff Publications. 1081.
https://digitalcommons.usf.edu/geo_facpub/1081