USF St. Petersburg campus Faculty Publications
Lower Bounds in Minimum Rank Problems
Document Type
Article
Publication Date
2010
ISSN
0024-3795
Abstract
The minimum rank of a graph is the smallest possible rank among all real symmetric matrices with the given graph. The minimum semidefinite rank of a graph is the minimum rank among Hermitian positive semidefinite matrices with the given graph. We explore connections between OS-sets and a lower bound for minimum rank related to zero forcing sets as well as exhibit graphs for which the difference between the minimum semidefinite rank and these lower bounds can be arbitrarily large.
Publisher
Elsevier
Recommended Citation
Mitchell, L., Narayan, S. & Zimmer, A. (2010). Lower Bounds in Minimum Rank Problems. Linear Algebra and its Applications, 432(1), 430-440. https://doi.org/10.1016/j.laa.2009.08.023.