USF St. Petersburg campus Faculty Publications
Impacts of DEM resolution, source, and resampling technique on SWAT-simulated streamflow.
Document Type
Article
Publication Date
2015
ISSN
0143-6228
Abstract
The sensitivity of streamflow simulated with the Soil and Water Assessment Tool (SWAT) model to Digital Elevation Model (DEM) resolution, DEM source and DEM resampling technique is still poorly understood. The objective of this study is to compare SWAT model streamflow estimates in the Johor River Basin (JRB), Malaysia for DEMs differing in resolution (from 20 to 1500 m), sources (Shuttle Radar Topography Mission: SRTM v4.1, Advanced Space-borne Thermal Emission and Reflection Radiometer: ASTER GDEM2, EarthEnv-DEM90 and Global Multi-resolution Terrain Elevation Data 2010: GMTED2010) and resampling technique (nearest neighbour, bilinear interpolation, cubic convolution and majority). The key findings were as follows: (1) SRTM v4.1 (Root Mean Square Error (RMSE) = 11.16 m) and EarthEnv-DEM90 (RMSE = 12.4 m) had better vertical accuracy over the JRB compared to the ASTER GDEM2 (RMSE = 16.95 m); (2) Accurate annual streamflow simulations were obtained by using nearly all of the DEM resolutions, as pointed out by a relative error (RE) lower than 7% from 20 to 50 m and from 100 to 800 m DEMs; (3) Prediction errors were the lowest for ASTER GDEM2 (RE = 3.9%), followed by SRTM v4.1 (RE = 5.4%), EarthEnv-DEM90 (RE = 6.3%), and GMTED2010 (RE = 7.3%); (4) the majority and nearest neighbour resampling techniques performed the best (RE of 6.0%), followed by bilinear interpolation (RE of 7.2%) and cubic convolution (7.5%). The study indicates that DEM resolution is the most sensitive SWAT model DEM parameter compared to DEM source and DEM resampling technique for streamflow simulation within SWAT.
Language
en_US
Publisher
Elsevier
Recommended Citation
Tan, M.L., Ficklin, D.L., Dixon, B., Ibrahim, A.L., Yusop, Z., & Chaplot, V. (2015). Impacts of DEM resolution, source, and resampling technique on SWAT-simulated streamflow. Applied Geography 63, 357-368. Doi:10.1016/j.apgeog.2015.07.014
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Comments
Abstract only. Full-text article is available through licensed access provided by the publisher. Published in Applied Geography 63, 357-368. Doi:10.1016/j.apgeog.2015.07.014. Members of the USF System may access the full-text of the article through the authenticated link provided.