Graduation Year
2005
Document Type
Thesis
Degree
M.A.
Degree Granting Department
Biology
Major Professor
Gary Arendash, Ph.D.
Committee Member
Huntington Potter, Ph.D.
Committee Member
Sidney Pierce, Ph.D.
Keywords
Amyloid, S-adenosylmethionine, PS1, Adenosine, Transgenic mice
Abstract
A recent epidemiological study suggested that higher caffeine intake reduces the risk of Alzheimer's disease (AD). Caffeine, a widely consumed stimulatory drug, is a non-selective adenosine receptor antagonist that has been shown to increase plasma adenosine levels in rodents. To determine any long-term protective effects of caffeine in a controlled longitudinal study, caffeine was added to the drinking water of APPsw transgenic (Tg) mice between 4 and 9 1/2 months of age, with behavioral testing done during the last 6 weeks of treatment. The average daily intake of caffeine per mouse (1.5 mg) was the human equivalent of 5 cups of coffee/day. Across multiple cognitive tasks of spatial learning/reference memory, working memory, and recognition/identification, Tg mice given caffeine (Tg+Caff) performed significantly better than Tg control mice and similar to non-transgenic controls. Discriminant Function Analysis involving multiple cognitive measures clearly showed the superior overall cognitive performance of Tg+Caff mice compared to Tg controls. Analysis of Aβ in the hippocampus by ELISA revealed Tg+Caff mice had significantly less soluble Aβ1-40 and insoluble Aβ1-42. In a follow-up study involving neurochemical analysis only, caffeine was added to the drinking water of 17 month old APPsw mice for 18 days. In this study, Tg+Caff mice also showed a significant reduction of insoluble Aβ1-42 in the hippocampus. In contrast to the reduced extracellular brain levels of adenosine in Tg controls, caffeine treatment normalized brain adenosine levels in Tg mice to that of non-transgenic controls. Analysis of amyloidogenic secretase activity revealed the reduction in Αβ is likely because of a reduction in gamma secretase activity as a result of increased SAM silencing of PS1 expression. This study suggest that a modest, long-term caffeine intake of approximately 500 mg per day (5 cups of coffee) may reduce considerably the risk of AD by decreasing amyloidogenesis.
Scholar Commons Citation
Schleif, William, "Effects of Long-Term Administration of Caffeine in a Mouse Model for Alzheimer’s Disease" (2005). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/854