Graduation Year
2019
Document Type
Thesis
Degree
M.S.
Degree Name
Master of Science (M.S.)
Degree Granting Department
Geology
Major Professor
Jason Gulley, Ph.D.
Committee Member
Bogdan P. Onac, Ph.D.
Committee Member
Mark Rains, Ph.D.
Keywords
dripwater, karst hydrology, northern Guam, theoretical pCO2
Abstract
Carbon dioxide is the primary driver of dissolution and precipitation reactions in epigene limestone caves. While much work has been conducted on CO2 dynamics involved in dissolution in the phreatic zone, less research has been conducted on vadose CO2 dynamics, especially in tropical caves developed in eogenetic limestones. In this study, we investigate spatial and temporal variation in pCO2 in the deep vadose zone of eogenetic limestone above Jinapsan Cave, located in northern Guam. Five years of carbonate chemistry data from three dripwater sites in Jinapsan Cave (Flatman, Station1, and Trinity) were used to model the theoretical pCO2 with which infiltrating waters had likely equilibrated along flow paths between the soil and the cave. Theoretical pCO2 essentially models the amount of CO2 that would need to be added to dripwaters that have degassed and become supersaturated with respect to calcite upon entering a lower CO2 cave void in order to return the water to equilibrium. Theoretical pCO2 values range from 10-2.8 to 10-1.8 atm among the three sites examined. These results were generally lower compared to similar studies in telogenetic and continental karst, which range from 10-3.7 to 10-0.96 atm. Theoretical pCO2 data from Jinapsan Cave have significant differences among the three drip sites, with the site closest to the entrance (Flatman) having the highest values and the farthest from the entrance (Trinity) having the lowest values; in addition, the values also have a great seasonal variability. Low theoretical pCO2 values in Jinapsan Cave’s dripwaters indicate that vadose zones in eogenetic limestone may be better ventilated, and hence have lower pCO2, than those in telogenetic limestone. The ventilation of the vadose zone is facilitated by high matrix porosity and permeability of eogenetic limestone and may be driven by barometric pressure changes or wind.
Scholar Commons Citation
Regis, Jamar, "Examining the Spatial and Temporal Variations in CO2 Partial Pressure in the Deep Vadose Zone Above Jinapsan Cave, Guam" (2019). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/7904