Graduation Year

2018

Document Type

Dissertation

Degree

Ph.D.

Degree Name

Doctor of Philosophy (Ph.D.)

Degree Granting Department

Chemistry

Major Professor

Jianfeng Cai, Ph.D.

Committee Member

Kirpal Bisht, Ph.D.

Committee Member

Shengqian Ma, Ph.D.

Committee Member

Xingmin Sun, Ph.D.

Keywords

γ-AApeptide, antimicrobial agents, OBTC library, drug resistance

Abstract

Peptidomimetics can mimic hierarchical structures of peptides and proteins. Thus, they are extensively studied for therapeutic applications. To break the limitation of backbones and frameworks and expand the peptidomimetics family, a new class of peptidomimetics - “γ-AApeptides” was developed. Design of γ-AApeptides is based on the chiral peptide nucleic acids (PNAs) backbone.

The World Health Organization estimates that one -third of all deaths in the world are on account of infectious diseases. AMPs are important because of their high activity against broad spectrum microbes, less susceptible to grow resistance and selectivity in binding to bacterial cells over human cells. γ-AApeptides as a new class of peptidomimetics have increased stability and enhanced chemical diversity. We have developed polymyxin mimic cyclic peptides, small linear molecules and hydantoin derivatives as potent antibiotic agents with γ-AApeptides. They have good bioactivity and selectivity.

Combinatorial library is key technology for accelerating the discovery of novel therapeutic agents. One-bead-two-compound γ-AApeptides-based library was developed and screened against SMYD2 protein which is essential for tumor growing.

Included in

Chemistry Commons

Share

COinS